"Вы читаете о роботах и программировании и думаете: «Было бы здорово сделать что-то подобное самому!» Теми, кем эта идея овладевает чуть больше просто мыслей смотрят кто и как делал своего робота. Читают статьи, смотрят видео. На картинках все понятно. В видеороликах тоже обычно показываются уже готовые продукты, а также сжато показываются технологии их изготовления. И вроде бы то же всё понятно: отпилил, прикрутил, припаял, соединил, запрограммировал вон на той программе вот этим кодом."

среда, 19 февраля 2020 г.

ДРАЙВЕР ДВИГАТЕЛЕЙ L293D

Для управления двигателями робота необходимо устройство, которое бы преобразовывало управляющие сигналы малой мощности в токи, достаточные для управления моторами. Такое устройство называют драйвером двигателей.
 драйвер двигателей L293D
драйвер двигателей L293D
Существует достаточно много самых различных схем для управления электродвигателями. Они различаются как мощностью, так и элементной базой, на основе которой они выполнены.
Мы остановимся на самом простом драйвере управления двигателями, выполненном в виде полностью готовой к работе микросхемы. Эта микросхема называется L293D и является одной из самых распространенных микросхем, предназначенных для этой цели.
L293D содержит сразу два драйвера для управления электродвигателями небольшой мощности (четыре независимых канала, объединенных в две пары). Имеет две пары входов для управляющих сигналов и две пары выходов для подключения электромоторов. Кроме того, у L293D есть два входа для включения каждого из драйверов. Эти входы используются для управления скоростью вращения электромоторов с помощью широтно модулированного сигнала (ШИМ).
L293D обеспечивает разделение электропитания для микросхемы и для управляемых ею двигателей, что позволяет подключить электродвигатели с большим напряжением питания, чем у микросхемы. Разделение электропитания микросхем и электродвигателей может быть также необходимо для уменьшения помех, вызванных бросками напряжения, связанными с работой моторов.
Принцип работы каждого из драйверов, входящих в состав микросхемы, идентичен, поэтому рассмотрим принцип работы одного из них.
 Схема драйвера двигателей
Схема драйвера двигателей
К выходам OUTPUT1 и OUTPUT2 подключим электромотор MOTOR1. На вход ENABLE1, включающий драйвер, подадим сигнал (соединим с положительным полюсом источника питания +5V). Если при этом на входы INPUT1 и INPUT2 не подаются сигналы, то мотор вращаться не будет. Если вход INPUT1 соединить с положительным полюсом источника питания, а вход INPUT2 - с отрицательным, то мотор начнет вращаться.
Теперь попробуем соединить вход INPUT1 с отрицательным полюсом источника питания, а вход INPUT2 - с положительным. Мотор начнет вращаться в другую сторону.
Попробуем подать сигналы одного уровня сразу на оба управляющих входа INPUT1 и INPUT2 (соединить оба входа с положительным полюсом источника питания или с отрицательным) - мотор вращаться не будет. Если мы уберем сигнал с входа ENABLE1, то при любых вариантах наличия сигналов на входах INPUT1 и INPUT2 мотор вращаться не будет.
Представить лучше принцип работы драйвера двигателя можно, рассмотрев следующую таблицу:
ENABLE1
INPUT1
INPUT2
OUTPUT1
OUTPUT2
1
0
0
0
0
1
1
0
1
0
1
0
1
0
1
1
1
1
1
1

Теперь рассмотрим назначение выводов микросхемы L293D.
L293D
 L293D

* Входы ENABLE1 и ENABLE2 отвечают за включение каждого из драйверов, входящих в состав микросхемы.
* Входы INPUT1 и INPUT2 управляют двигателем, подключенным к выходам OUTPUT1 и OUTPUT2.
* Входы INPUT3 и INPUT4 управляют двигателем, подключенным к выходам OUTPUT3 и OUTPUT4.
* Контакт Vs соединяют с положительным полюсом источника электропитания двигателей или просто с положительным полюсом питания, если питание схемы и двигателей единое. Проще говоря, этот контакт отвечает за питание электродвигателей.
* Контакт Vss соединяют с положительным полюсом источника питания. Этот контакт обеспечивает питание самой микросхемы.
* Четыре контакта GND соединяют с "землей" (общим проводом или отрицательным полюсом источника питания). Кроме того, с помощью этих контактов обычно обеспечивают теплоотвод от микросхемы, поэтому их лучше всего распаивать на достаточно широкую контактную площадку.




Характеристики микросхемы L293D


* напряжение питания двигателей (Vs) - 4,5...36V
* напряжение питания микросхемы (Vss) - 5V
* допустимый ток нагрузки - 600mA (на каждый канал)
* пиковый (максимальный) ток на выходе - 1,2A (на каждый канал)
* логический "0" входного напряжения - до 1,5V
* логическая "1" входного напряжения - 2,3...7V
* скорость переключений до 5 kHz.
* защита от перегрева


По материалам https://myrobot.ru/stepbystep/el_driver.php