Различаются Принстонскую и Гарвардскую архитектуру вычислительных машин. Эти архитектурные варианты были предложены в конце 40-х годов специалистами, соответственно, Принстонского и Гарвардского университетов США для разрабатываемых ими моделей компьютеров.
Принстонская архитектура
Принстонская архитектура, которая часто называется архитектурой фон Неймана, характеризуется использованием общей оперативной памяти для хранения программ, данных, а также для организации стека. Для обращения к этой памяти используется общая системная шина, по которой в процессор поступают и команды, и данные.
Архитектура современных персональных компьютеров основана на
магистрально-модульном принципе.
магистрально-модульном принципе.
Любую вычислительную машину образуют три основные компонента:
- процессор,
- память,
- устройства ввода-вывода (УВВ).
Информационная связь между устройствами компьютера осуществляется через системную шину (системную магистраль).
Шина – это кабель, состоящий из множества проводников. Количество проводников, входящих в состав шины, является
максимальной разрядностью шины.
максимальной разрядностью шины.
Системная шина, в свою очередь, представляет собой совокупность
- шины данных, служащей для переноса информации;
- шины адреса, которая определяет, куда переносить информацию;
- шины управления, которая определяет правила для передачи информации;
- шины питания, подводящей электропитание ко всем узлам вычислительной машины.
Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется
разрядностью шины.
разрядностью шины.
Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.
Устройство управления (УУ) формирует адрес команды, которая должна быть выполнена в данном цикле, и выдает управляющий сигнал на чтение содержимого соответствующей ячейки запоминающего устройства (ЗУ). Считанная команда передается в УУ. По информации, содержащейся в адресных полях команды, УУ формирует адреса операндов и управляющие сигналы для их чтения из ЗУ и передачи в арифметико-логическое устройство (АЛУ). После считывания операндов устройство управления по коду операции, содержащемуся в команде, выдает в АЛУ сигналы на выполнение операции. Полученный результат записывается в ЗУ по адресу приемника результата под управлением сигналов записи. Признаки результата (знак, наличие переполнения, признак нуля и так далее) поступают в устройство управления, где записываются в специальный регистр признаков. Эта информация может использоваться при выполнении следующих команд программы, например команд условного перехода.
Устройство ввода позволяет ввести программу решения задачи и исходные данные в ЭВМ и поместить их в оперативную память. В зависимости от типа устройства ввода исходные данные для решения задачи вводятся непосредственно с клавиатуры, либо они должны быть предварительно помещены на какой-либо носитель (дисковый накопитель).
Устройство вывода служит для вывода из ЭВМ результатов обработки исходной информации. Чаще всего это символьная информация, которая выводится с помощью печатающих устройств или на экран дисплея.
Запоминающее устройство или память – это совокупность ячеек, предназначенных для хранения некоторого кода. Каждой из ячеек присвоен свой номер, называемый адресом. Информацией, записанной в ячейке, могут быть как команды в машинном виде, так и данные.
Обработка данных и команд осуществляется посредством арифметико-логического устройства (АЛУ), предназначенного для непосредственного выполнения машинных команд под действием устройства управления. АЛУ и УУ совместно образуют центральное процессорное устройство (ЦПУ). Результаты обработки передаются в память.
Основные принципы построения вычислительных машин с архитектурой фон Неймана
Основные принципы построения вычислительных машин с архитектурой фон Неймана
- Принцип двоичности. Для представления данных и команд используется двоичная система счисления.
- Принцип программного управления. Программа состоит из набора команд, которые выполняются процессором друг за другом в определённой последовательности.
- Принцип однородности памяти. Как программы (команды), так и данные хранятся в одной и той же памяти (и кодируются в одной и той же системе счисления, чаще всего – двоичной). Над командами можно выполнять такие же действия, как и над данными.
- Принцип адресуемости памяти. Структурно основная память состоит из пронумерованных ячеек, процессору в произвольный момент времени доступна любая ячейка.
- Принцип последовательного программного управления. Все команды располагаются в памяти и выполняются последовательно, одна после завершения другой.
- Принцип условного перехода. Команды из программы не всегда выполняются одна за другой. Возможно присутствие в программе команд условного перехода (а также команд вызова функций и обработки прерываний), которые изменяют последовательность выполнения команд в зависимости от значений данных. Этот принцип был сформулирован задолго до фон Неймана Адой Лавлейс и Чарльзом Бэббиджем, однако был логически включен в указанный набор как дополняющий предыдущий принцип.
Архитектура фон Неймана имеет ряд важных достоинств.
- Наличие общей памяти позволяет оперативно перераспределять ее объем для хранения отдельных массивов команд, данных и реализации стека в зависимости от решаемых задач. Таким образом, обеспечивается возможность более эффективного использования имеющегося объема оперативной памяти в каждом конкретном случае применения.
- Использование общей шины для передачи команд и данных значительно упрощает отладку, тестирование и текущий контроль функционирования системы, повышает ее надежность.
Поэтому Принстонская архитектура в течение долгого времени доминировала в вычислительной технике.
Однако ей присущи и существенные недостатки. Основным из них является необходимость последовательной выборки команд и обрабатываемых данных по общей системной шине. При этом общая шина становится «узким местом» (bottleneck – «бутылочное горло»), которое ограничивает производительность цифровой системы.
Гарвардская архитектура
Гарвардская архитектура была разработана Говардом Эйкеном в конце 1930-х годов в Гарвардском университете с целью увеличить скорость выполнения вычислительных операций и оптимизировать работу памяти. Она характеризуется физическим разделением памяти команд (программ) и памяти данных. В ее оригинальном варианте использовался также отдельный стек для хранения содержимого программного счетчика, который обеспечивал возможности выполнения вложенных подпрограмм. Каждая память соединяется с процессором отдельной шиной, что позволяет одновременно с чтением-записью данных при выполнении текущей команды производить выборку и декодирование следующей команды. Благодаря такому разделению потоков команд и данных и совмещению операций их выборки реализуется более высокая производительность, чем при использовании Принстонской архитектуры.
Недостатки Гарвардской архитектуры связаны с необходимостью проведения большего числа шин, а также с фиксированным объемом памяти, выделенной для команд и данных, назначение которой не может оперативно перераспределяться в соответствии с требованиями решаемой задачи. Поэтому приходится использовать память большего объема, коэффициент использования которой при решении разнообразных задач оказывается более низким, чем в системах с Принстонской архитектурой. Однако развитие микроэлектронной технологии позволило в значительной степени преодолеть указанные недостатки, поэтому Гарвардская архитектура широко применяется во внутренней структуре современных высокопроизводительных микропроцессоров, где используется отдельная кэш-память для хранения команд и данных. В то же время во внешней структуре большинства микропроцессорных систем реализуются принципы Принстонской архитектуры.
Недостатки Гарвардской архитектуры связаны с необходимостью проведения большего числа шин, а также с фиксированным объемом памяти, выделенной для команд и данных, назначение которой не может оперативно перераспределяться в соответствии с требованиями решаемой задачи. Поэтому приходится использовать память большего объема, коэффициент использования которой при решении разнообразных задач оказывается более низким, чем в системах с Принстонской архитектурой. Однако развитие микроэлектронной технологии позволило в значительной степени преодолеть указанные недостатки, поэтому Гарвардская архитектура широко применяется во внутренней структуре современных высокопроизводительных микропроцессоров, где используется отдельная кэш-память для хранения команд и данных. В то же время во внешней структуре большинства микропроцессорных систем реализуются принципы Принстонской архитектуры.